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The Killer App for Edge Computing: Video Analytics[1]
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Role of CCTV Video Analytics Solutions in
Airport Security & Operations

Self-driving and smart cars Surveillance and security Augmented reality

Potential benefits of edge computing for video analytics:
Providing low-latency, energy-efficient, and privacy-protecting services to users.

Credit: Google images [1] "Real-Time Video Analytics: The Killer App for Edge Computing", in Computer, 2017. 2



The Model's Accuracy Suffers from Various Drifts

e Data drift: A shift in the distribution of e Model drift: Compressed models have

features or labels. less generalization ability compared to the
original models.
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751 applied to perform unseen tasks (e.g., fine
507 tuning, transfer learning, embodied Al).
' What can we do?
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[2] “Ekya: Continuous Learning of Video Analytics Models on Edge Compute Servers”, in NSDI, 2022.



Model Retraining Can Handle Drifts

® Retraining configuration adaption e Inference configuration adaption

f(x): Validation accuracy

A/'/ Where do the additional

computing resources for
Model Retraining model retraining come from?

)

Downgrade the inference
configuration!
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x: Epochs, training data size, etc. Example: Lower input resolution
leads to reduced inference accuracy

and resource consumption.

[3] “Speeding up automatic hyperparameter optimization of deep neural networks by

Credit: Google images
5 5 extrapolation of learning curves”, in 1JCAI, 2015.



Retraining vs. Inference: Competitive Dynamics
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Example: A typical resource allocation process for
model retraining and inference across T time slots.



Model Retraining and Inference Co-location Paradigm
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Model Retraining and Inference Co-location Paradigm

-
A

Data Upload

-

Scheduler Retraining Configuration

2,

Sampled Data

Teacher

N

AR
oo /a\:
AR
R ABETE >R
oo W iieZse
NN

o\\\!//)o

Choose
Configuration for

Inference and | Inference and Retraining

@ Pseudo-label

Retraining Configuration

All Data

<4

Student @

Edge

GPUGPUCPU (@) Return Prediction

@ Model Retraining

Time Slot t



Summary Thus Far

Al models are increasingly pushed to the edge to serve users.

{

The model's accuracy suffers from various drifts.

{

Model retraining can handle drifts.

}

Competitive relationship between model retraining and inference.




Summary Thus Far

Central question:

How can resources be credibly allocated for model
retraining and inference co-location to optimize long-
term model performance under various drifts?




Long-term Accuracy Model and Resource Allocation Model

Objective : Optimize long-term accuracy. Constraint (1): Limited resource on edge.
T -1 M , -1 N . M . N ) -
Mmax. .y, o Zf(ZD(r)in (7)4 /ZDm)z V() A4;D, DU);ICZ’ xi(t)+D(t);C].y].(t)_qt),VteT.
t=1 =1 i=1 r=1 j=I1 = J=

f(x): Validation accuracy,
 increasing concave function.
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Resource allocation on edge.
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Constraint (2-4): Each time slot, select only

one retraining and inference configuration.
x,(t)e{0,1}, VieM, VteT,
y;(1)e0,1}, VjeN,VieT,

M
le.(t)zl, VteT ,

i=1
N

x: Average retraining configuration (such v: Inference configuration (such Z y;0)=1, VteT.
j=1

as sample ratio) before time slot t. as resolution) at time slot t. 10



Challenges of the Original Problem

Tl M (-1 N
max . ..y« Z f(z D, Z x(7) 4] / Z D, )Z Vi (t)AJ['D(t) (P)
=1 7l =1 r=1 =

M N
st. D, > C'x()+D,Y> Ciy ()<C,,VteT. Challenges:
= - 1. Time-coupled decision making.
x,(¢) 0,1}, VieM,VieT, 2. Non-convex objective function.
y, (t)e{0,1}, VjeN,VteT, 3. Problem (P) is integer programming
v problem, NP-hard.
> x(t)=1, VieT, 4. Analytical formula for fis
i=1 commonly unknown in practice.
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Our Solution ”

T -1 M -1 N
MaX . 0.y, Z f(z Dy, Z x,(0)4; / Z D, )Z Y, (f)A;D(r)
t=1 =1 i=1 =1 j=1

Algorithm 1 ORRIC

Input: V;, W, U, = % and four ascending lists: {A,LT,'IZ €
M}, {Al,j e N}, {CT,ie M}, {C],j e N}.
Output: A pair of retraining and inference configurations.
1; Initialization: Setz =1, = N,¢* =3* =K =0.
2: while s < M and 7 > 1 do
3 if Cf + O] < U, then

4 if V; AT —|—I/VtAI > K then

= Il —],K VtAT—PWtAI;
6: 1 =1+ 1;

i else

8 § ==

9: return %, j";

M N
AX v (0.5,(0) Vtzxi (I)AiT + VVtZyj (I)AJI-

relaxation =l = (Dt)

D . A ,(Id]
whereV = ] —— min_ — |,

max

W, = f(Ary, )~ LA, and W, = f (AL, ).Vt >1.

Our solution:

1.

Deal with target function of (P): Leverage the concave
property of f and a special-designed regularization term to
relax the target function to a linear function. Decouple it
to every time slot, we get (Dt).

. To deal with (Dt), we propose ORRIC. The basic idea is:

first we remove all configurations that consume more
resources yet yield lower profits, then searching through
retraining and inference configurations pairs likely to
exceed the computational resource constraint.

ORRIC has linear complexity and uses partial information
of f: f(AL 4) and L, a positive lower bound of f’(AL ..).
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Insights from ORRIC

With different V; and W, ORRIC can convert
to several heuristic algorithms for different
resource environments.

M N
max, ., Vthl.(t)AiT —|—W;Zyj(t)A][-
i=1

J=1

D.A4A (I
whereV, = L Hln; min (Zl} (DY)

=t T

max

W, = f (AL, )—LAL, and W, = f (AL, ).Vt>1.

max

Sufficient Knowledge-Distillation
Limited Focus-Shift Inference-Greedy
Scarce Inference-Only

1) Knowledge-Distillation: The teacher model imparts
knowledge to the student model without considering
resource consumption.

2) Inference-Greedy: Prioritize using a higher
configuration for inference and utilize the remaining
resources for retraining.

3) Focus-Shift: Shift the focus from retraining to
inference as time passes.

4) Inference-Only: This algorithm is actually the
traditional computing paradigm that deploys a trained
model and then performs inference.
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Insights from Compititive Results

ORRIC  1=g= Inference-Only

Tight CR of ORRIC
1

[(Afnax) _ _LAmaxDiinAmin
f(0)  f(Amax) DinaxAmax

rf(0)
f(0) + (T — 1)f (Anax)

Tight CR of Inference-Only
f(0)
f (Armax)

0
Competitive Ratio (CR)

Definition: For a maximization problem, the competitive
ratio (or CR) c of algorithm ALG is definedas ¢ < ALG/
OPT for every input I, where OPT represents the
optimal offline algorithm with complete knowledge of
future information. ¢ higher, ALG better.

Corollary 1: When T > (f (AL ...) — f(0))/(af(0)), the
tight competitive ratio of ORRIC is strictly better (bigger)
than the tight competitive ratio of Inference-Only.

Insights: When drift occurs for a sufficiently lengthy time,
the worst-case performance of the Model Retraining
and Inference Co-location paradigm is strictly better
than that of the traditional Inference-Only paradigm.
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Evaluation Setup

Gaussian Noise  Shot Noise Impulse Noise  Defocus Blur Frosted Glass Blur

Dataset: CIFAR-10-C

Our Code: https://github.com/caihuaiguang/ORRIC.

Setup: We treat these corruptions as imitations of data drift.
We first train MobileNetV2 (student model) and ResNet50

(teacher model) on the training set of CIFAR-10, then test them
on CIFAR-10-C.

Inference configuration: different resolutions of input images
(32*%32, 28*28, 24*24, or 20*20). A§- is the model’s normalized
accuracy on the CIFAR-10 test dataset when using different input
resolutions (with the largest number being 1), C§- is the

corresoponding MACs.

Retraining configuration: different sampling ratios of uploaded
data at the t-th time slot (0, 0.1, 0.2, 0.3, 0.5, 1.0), with training
for only 1 epoch. Cl-T is the corresoponding MACs, and Al-T is

propotianl to Cl-T (with the largest number normalized to 1).

f(AL .. is set as the model’s accuracy on the cifar-10 test
dataset using the best inference configuration and L is set as 0.01.

15



Evaluation Results
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MobileNetV2 (28*28) | 7.45 10.15 [73.29167.94 3833 63.21 6248 49.68 59.17 5923 6453 6221 6038 69.31
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ResNet50 (20%20) 65.76 17.41 5450 (149.20 32.26 50.71 49.00 39.31 44.19 4899 5223 4999 4999 53.04
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Severity level of corruption are becoming higher.

Accuracy-Cost-Latency trade-off comparison;



Future Direction: Modeling and Algorithm Design

1. Modeling of the model retraining and inference co-location paradigm.

® f(x) analytic expression (related research: learning curve).

® Other assumption: Current model performance is only related to past data within a
time window (e.g. in-context learning).

® Multi task.

2. Algorithm design.

® Close loop algorithm. Bandit algorithm.

® Tighter comptitive ratio (must greater than inference only algorithm).



Future Direction: On-device Model Retraining and
Inference Co-location

® Exiting researches on model retraining and inference co-location typically deploy the

model on edge or cloud.

® Model retraining and inference co-location on devices holds promise for enhanced

privacy protection, reduced bandwidth usage and personalized Al models.

® Famous works like TensorFlow Lite, PyTorch Mobile and MNN mainly focus on model
inference on devices, and there is little code available for model retraining and inference

co-location.
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Thank you!

Our Code: https://github.com/caihuaiguang/ORRIC.



