

Online Resource Allocation for Edge Intelligence with Colocated Model Retraining and Inference

Huaiguang Cai, Zhi Zhou, Qianyi Huang

Sun Yat-Sen University

Presenter: Zhiwei Zhai

The Killer App for Edge Computing: Video Analytics[1]

Self-driving and smart cars

Potential benefits of edge computing for video analytics: Providing low-latency, energy-efficient, and privacy-protecting services to users.

[1] "Real-Time Video Analytics: The Killer App for Edge Computing", in Computer, 2017. \qquad \qquad \qquad Credit: Google images

The Model's Accuracy Suffers from Various Drifts

●Data drift: A shift in the distribution of features or labels.

Example: Class Distribution Shifts[2]

- Model drift: Compressed models have less generalization ability compared to the original models.
- Task drift: The deployed model may be applied to perform unseen tasks (e.g., fine tuning, transfer learning, embodied AI).

What can we do?
Retrain the model!

Model Retraining Can Handle Drifts

●Retraining configuration adaption ●Inference configuration adaption

 x : Epochs, training data size, etc.

Example: Lower input resolution leads to reduced inference accuracy and resource consumption.

Credit: Google images

[3] "Speeding up automatic hyperparameter optimization of deep neural networks by extrapolation of learning curves", in IJCAI, 2015.

 10×10

36 x 36

 24×24

72 x 72

Retraining vs. Inference: Competitive Dynamics

Example: A typical resource allocation process for model retraining and inference across T time slots.

Model Retraining and Inference Co-location Paradigm

Model Retraining and Inference Co-location Paradigm

Summary Thus Far

Summary Thus Far

 AI models are increasingly pushed to the edge to serve users. Central question:

retraining and inference co-location to optimize long-Competitive relationship between model retraining and inference. How can resources be credibly allocated for model term model performance under various drifts?

Long-term Accuracy Model and Resource Allocation Model

Objective : Optimize long-term accuracy.

: Average retraining configuration (such y : Inference configuration (such as sample ratio) before time slot t. as resolution) at time slot t.

Constraint (1): Limited resource on edge.

Resource allocation on edge.

Constraint (2-4): Each time slot, select only one retraining and inference configuration.

$$
x_i(t) \in \{0,1\}, \quad \forall i \in \mathcal{M}, \forall t \in \mathcal{T},
$$

\n
$$
y_j(t) \in \{0,1\}, \quad \forall j \in \mathcal{N}, \forall t \in \mathcal{T},
$$

\n
$$
\sum_{i=1}^M x_i(t) = 1, \quad \forall t \in \mathcal{T},
$$

\n
$$
\sum_{j=1}^N y_j(t) = 1, \quad \forall t \in \mathcal{T}.
$$

\n10

Challenges of the Original Problem

$$
\max_{x_i(t), y_j(t)} \sum_{t=1}^T f(\sum_{\tau=1}^{t-1} D_{(\tau)} \sum_{i=1}^M x_i(\tau) A_i^T / \sum_{\tau=1}^{t-1} D_{(\tau)}) \sum_{j=1}^N y_j(t) A_j^I D_{(t)}
$$
 (P)

s.t.
$$
D_{(t)} \sum_{i=1}^{M} C_i^T x_i(t) + D_{(t)} \sum_{j=1}^{N} C_j^T y_j(t) \le C_{(t)}, \forall t \in T
$$
.
\n $x_i(t) \in \{0,1\}, \quad \forall i \in M, \forall t \in T$,
\n $y_j(t) \in \{0,1\}, \quad \forall j \in N, \forall t \in T$,
\n $\sum_{i=1}^{M} x_i(t) = 1, \quad \forall t \in T$,
\n $\sum_{j=1}^{N} y_j(t) = 1, \quad \forall t \in T$.

Challenges:

-
-
- **1. EXECUTE:**

1. Time-coupled decision making.

2. Non-convex objective function.

3. Problem (P) is integer programming

problem NP-hard 2. Non-convex objective function. $\sum_{j=1}^{n} \frac{1}{j} \sum_{(i)}$ (P)

Challenges:

1. Time-coupled decision making.

2. Non-convex objective function.

3. Problem (P) is integer programming

problem, NP-hard.

4. Analytical formula for f is

commonly unknown i problem, NP-hard. $(t) A_j^I D_{(t)}$ (P)

Challenges:

1. Time-coupled decision making.

2. Non-convex objective function.

3. Problem (P) is integer programming

problem, NP-hard.

4. Analytical formula for f is

commonly unknown in practice.
- commonly unknown in practice.

Our Solution 1 M $t-1$ $U_{(\tau)} \sum \lambda_i(t) A_i^{-1} \sum D_{(\tau)} \sum y_j(t) A_j D_{(t)}^{-1}$ 1 $(t), y$ 1 (t) 1 1 $\overline{t=1}$ $\overline{t=1}$ $\overline{t=1}$ $\overline{t=1}$ $\max_{x_i(t), y_j(t)} \sum_{i}^{\infty} f(\sum_{i}^{\infty} D_{(t)} \sum_{i}^{\infty} x_i(\tau) A_i^T / \sum_{i}^{\infty} D_{(t)}) \sum_{i}^{\infty} y_j(t) A_i$ T $t-1$ M $t-1$ N $T/\sum D$ \sum \sum μ (t) μ ^T $i^{(i)A_i} \not\perp \underline{D_{(\tau)}} \underline{D_{(\tau)}} \underline{y_j} (i) A_j D_{(t)}$ $\overline{t=1}$ $\overline{\tau=1}$ $\overline{t=1}$ $\overline{\tau=1}$ $\overline{t=1}$ $\overline{t=1}$ $\sum_{x_i(t),y_j(t)} \sum_{i}^{\infty} f(\sum_{i}^{\infty} D_{(t)} \sum_{i}^{\infty} x_i(\tau) A_i^T / \sum_{i}^{\infty} D_{(t)}) \sum_{i}^{\infty} y_j(t) A_j^I D_{(t)}$ $\overline{\tau}$ $\overline{\tau}$ $\overline{\tau}$ $\overline{\tau}$ $\overline{\tau}$ $\overline{\tau}$ τ -1 M $t-1$ $\overline{t} = 1$ $\overline{t} = 1$ $\sum_{i=1}^T f(\sum_{i=1}^{t-1} D_{(\tau)} \sum_{i=1}^M x_i(\tau) A_i^T / \sum_{i=1}^{t-1} D_{(\tau)}) \sum_{i=1}^N y_{j}$

Algorithm 1 ORRIC

Input: V_t , W_t , $U_t = \frac{C_{(t)}}{D_{(t)}}$ and four ascending lists: { A_i^T , $i \in$ $\mathcal{M}\},\ \{A_i^I, j \in \mathcal{N}\},\ \{C_i^T, i \in \mathcal{M}\},\ \{C_i^I, j \in \mathcal{N}\}.$ **Output:** A pair of retraining and inference configurations. 1: Initialization: Set $i = 1, j = N, i^* = j^* = K = 0$. 2: while $i \leq M$ and $j \geq 1$ do if $C_i^T + C_i^I \leq U_t$ then $3:$ if $V_t A_i^T + W_t A_i^I > K$ then $4:$ $i^* = i$; $j^* = j$; $K = V_t A_i^T + W_t A_j^T$; $5:$ $i=i+1$: $6:$ else $7:$ $i = i - 1$; $8:$ 9: **return** i^*, j^* ;

max_{x_i(t),y_j(t)}
$$
V_t \sum_{i=1}^{M} x_i(t) A_i^T + W_t \sum_{j=1}^{N} y_j(t) A_j^T
$$
 (Dt)
\n
$$
W_t^T D_{(t)}
$$
\nwhere $V_t = L \frac{D_{\min} A_{\min}}{D_{\max}} \left(\sum_{\tau=t}^{T-1} \frac{1}{\tau} \right)$,
\n $W_1 = f(A_{\max}^T) - LA_{\max}^T$ and $W_t = f(A_{\max}^T), \forall t > 1$.
\nOur solution:
\n1. Deal with target function of (P): Leverage the concave
\nproperty of f and a special-designed regularization term to
\nrelax the target function to a linear function. Decouple it
\nto every time slot, we get (Dt)

Our solution:

- property of f and a special-designed regularization term to relax the target function to a linear function. Decouple it relaxation (Dt)

where $V_i = L \frac{D_{\text{min}} A_{\text{min}}}{D_{\text{max}}} \left(\sum_{\tau=1}^{T-1} \frac{1}{\tau} \right)$,
 $W_1 = f(A_{\text{max}}^T) - L A_{\text{max}}^T$ and $W_i = f(A_{\text{max}}^T)$, $\forall t > 1$.

Our solution:

1. Deal with target function of (P): Leverage the concave

p
- first we remove all configurations that consume more resources yet yield lower profits, then searching through retraining and inference configurations pairs likely to exceed the computational resource constraint. 3. Deal with target function of (P): Leverage the concave
property of f and a special-designed regularization term to
relax the target function to a linear function. Decouple it
to every time slot, we get (Dt).
2. To deal
- of f : $f(A_{max}^T)$ and L, a positive lower bound of $f'(A_{max}^T)$. .

Insights from ORRIC

With different V_t and ${W}_t$, ORRIC can convert to several heuristic algorithms for different resource environments.

 (), () 1 1 1 min min max 1 max max max max () () 1 , , 1. i j I M N T I x t y t t i i t j j i j T t t T T T t V x t A W y t A D A where V L D W f A LA and W f A t (Dt)

1) Knowledge-Distillation: The teacher model imparts knowledge to the student model without considering resource consumption.

2) Inference-Greedy: Prioritize using a higher configuration for inference and utilize the remaining resources for retraining.

3) Focus-Shift: Shift the focus from retraining to inference as time passes.

4) Inference-Only: This algorithm is actually the traditional computing paradigm that deploys a trained model and then performs inference.

Insights from Compititive Results

Definition: For a maximization problem, the competitive ratio (or CR) c of algorithm ALG is defined as $c \leq ALG/$ OPT for every input I, where OPT represents the optimal offline algorithm with complete knowledge of future information. c higher, ALG better.

Corollary 1: When $T > (f(A_{max}^T) - f(0))/(\alpha f(0))$, the tight competitive ratio of ORRIC is strictly better (bigger) than the tight competitive ratio of Inference-Only.

max) Insights Wh Insights: When drift occurs for a sufficiently lengthy time, the worst-case performance of the **Model Retraining** and Inference Co-location paradigm is strictly better than that of the traditional Inference-Only paradigm.

Evaluation Setup

Dataset: CIFAR-10-C

Setup: We treat these corruptions as imitations of data drift. We first train MobileNetV2 (student model) and ResNet50 (teacher model) on the training set of CIFAR-10, then test them on CIFAR-10-C.

Inference configuration: different resolutions of input images (32*32, 28*28, 24*24, or 20*20). A_j^I is the model's normalized accuracy on the CIFAR-10 test dataset when using different input resolutions (with the largest number being 1), C^I_j is the corresoponding MACs.

Retraining configuration: different sampling ratios of uploaded data at the t-th time slot (0, 0.1, 0.2, 0.3, 0.5, 1.0), with training for only 1 epoch. C_l^T is the corresoponding MACs, and $\,A_l^T$ is propotianl to C_l^T (with the largest number normalized to 1).

 $_{max}$) is set as the model s $_{max}^T$) is set as the model's accuracy on the cifar-10 test dataset using the best inference configuration and L is set as 0.01.

Our Code: https://github.com/caihuaiguang/ORRIC. 1999. 15 and 2012 15 and 2013 16 and 2013

Evaluation Results

Severity level of corruption are becoming higher. Accuracy-Cost-Latency trade-off comparisoner

Future Direction: Modeling and Algorithm Design

- 1. Modeling of the model retraining and inference co-location paradigm.
	- \bullet $f(x)$ analytic expression (related research: learning curve).
	- Other assumption: Current model performance is only related to past data within a time window (e.g. in-context learning).
	- \bullet Multi task.
- 2. Algorithm design.
	- \bullet Close loop algorithm. Bandit algorithm.
	- \bullet Tighter comptitive ratio (must greater than inference only algorithm).

Future Direction: On-device Model Retraining and Inference Co-location

- Exiting researches on model retraining and inference co-location typically deploy the model on edge or cloud.
- Model retraining and inference co-location on devices holds promise for enhanced privacy protection, reduced bandwidth usage and personalized AI models.
- Famous works like TensorFlow Lite, PyTorch Mobile and MNN mainly focus on model inference on devices, and there is little code available for model retraining and inference co-location.

Thank you!

Our Code: https://github.com/caihuaiguang/ORRIC. 19